The surface evaporation capacitor (SEC)
Pore scale physics constrain terrestrial surface evaporation
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overview

r 3
. . . . Q Atmosphere
* Evaporation is an energy intensive D
process: evaporation consumes ~ 25%
. —— Cloud movement
of global solar energy input (40K TW) 40

=

_'...‘.7__________

* Vegetation is important: 60% of
terrestrial precipitation (111x103
km3/yr) returns to the atmosphere via
transpiration (40%) or surface
evaporation (20%)

* Pore scale processes are important:
energy and mass exchanges between
surfaces and the atmosphere are
controlled by pore scale processes FlUe
(both on soil surfaces and plant leaves) \W}ﬁar

Reservoirs
i

* The water and carbon cycles are linked: global water and carbon cycles are intimately linked
in plant leaves (CO, uptake and assimilation is associated with loss of water by transpiration)
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of ET (E and T) are difficult to separate

|
| * The separation of ET to its components E and T remains a
| challenge (Lawrence et al. 2007; Wei et al. 2017) — estimates
] of global mean T range from 25% to 90% of mean global ET
i
i *  Why is this so difficult? methodological difficulties (no good
i measurements), plant biological control (stomata, uptake),
| empirical coefficients (Penman-Monteith, canopy resistance)
i
B * Why is this important? surface energy balance, irrigation
B management, water and carbon cycles, isotope fractionation g
i
: * We propose an approach for estimating surface evaporation E based
n on soil and rainfall characteristics independent of T or ET estimates
|
|
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Soil evaporation characteristic length — a brief overview

* The initial stage of soil evaporation (stage-1) is sustained by
capillary flow to the vaporization plane at soil surface

e Transition from stage-1 (capillary) to stage-2 (diffusion)
evaporation is determined by soil-specific characteristic
length (L) at which capillary continuity is disrupted

* The evaporation characteristic length varies with soil type
and marks the depth below which soil water is largely
sheltered from surface evaporation (certain losses in stage-2)

* The evaporation characteristic length is affected by
atmospheric demand (evaporation rate) and soil hydraulic
conductivity (clay = short L. due to viscous resistance)

Main point — for each soil type a characteristic length defines
the depth of evaporable water (deepest for loamy soils)
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1. To extend representation of evaporation from porous media to consider concurrent
evaporation-redistribution effects on soil-specific evaporative losses - analytical model

2. To define near-surface “active evaporation region” using the concept of evaporative
characteristic length to estimate surface evaporative losses from different soil types
under different rainfall patterns — surface evaporation capacitor (SEC)

3. To evaluate the SEC concept using literature and lysimeter data and extend to global
evaporation estimation using resolved global soil maps, potential ET and rainfall data

Surface evaporation E [mm/year]
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Evaporation—redistribution dynamics - analytical solution

| * We seek an analytical representation of water fluxes during stage-1 evaporation with
i simultaneous internal redistribution following a wetting event (i.e., a rainfall event)
i
[ » The transition to stage-2 evaporation occurs at a soil-specific characteristic length
0 L. marked by critical capillary pressure h_and water content 6. at the surface
U » During stage-1 evaporation, redistribution or drainage below L. is described analytically based
] on the Youngs (1960) model
i
I » The two processes are analytically combined to represent how BC affect evaporation dynamics
|
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Evaporation-Redistribution - experiments and analytical estimates

evaporation only
(g re-saturation

B8 « To understand the interplay of . w0
U evaporation-redistribution dynamics,  _ tﬁtb saturation oo 0
. . - —drainage B =
U we conducted a series of wetting- 3 4 10mm|| 10mm i Gof
U drying events of fine-sand column = 20 mm i _
i E 3 = 50 € .
- |
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* Following wetting (rainfall event), stage-1 evaporation (e) from
the surface and a redistribution flux F(t) occur simultaneously
— key steps: (1) define depth of evaporation active region L.
with mean water content 0,; (2) estimate the amount of
drainable water F__; (3) calculate time of transition to stage-2

* Lab experiments in various soils (0.75 m column) with
different boundary conditions have shows = very short
duration of active drainage (redistribution) at high rates

Main point - Concurrent drainage shortens the duration of
stage-1 and may reduce overall evaporative losses

Evaporation—redistribution dynamics - analytical solution

e

Initially saturated - evaporation only

¥
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soil lysimeter — DRI Las Vegas

|
|
B °* The SEC model was evaluated using data from @ DRI
| 3-m deep lysimeter filled with local sandy soil .
W (Las Vegas, DRI) i
w e
B ° We used a decade-long time series of rainfall events,
| potential ET, surface evaporation (no vegetation), water
| content and total storage measurements
|
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Surface evaporation from desert lysimeter

Event-based evaporation

5 * The decade-long cumulative rainfall depth of 1 m was £ 20 © 7
I @
- . . . =
i partitioned into surface evaporation (0.9 m) and inter- T
seasonal storage in the lysimeter (0.1 m) E15
| 8
. . . . . g
5 * Despite high potential evaporation (cumulative ET,=18 m; g1
I 0 ©
aridity index ~0.05), a fraction of rainwater (11%) remained i
I e
. o 1]
stored in the lysimeter across years (no plant uptake 8
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* The lysimeter surface evaporative
capacitor (SEC) layer of 0.5 m was
estimated from soil properties (i.e.,
the evaporation characteristic length)

* Rainwater percolated into deeper
layers only when the SEC layer water
content exceeded a critical water
content 6, of 0.13 m3 m=3

* The arrival of rainwater to deeper
layers was delayed with increasing
soil depth

* The estimated redistribution “events”
were in agreement with increased soil
water content in deeper layers
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Deep soil water storage determined by 3 rainfall events

* The increase of inter annual water storage in the lysimeter occurred in three large
y
] rainfall events that exceeded SEC critical capacitance (generating leakage F>0!)
i . o
" Other rainfall events evaporated back to the atmosphere within one season
B0 . SEC estimates of critical storage capture the salient features of arid region soil water
i P g
: storage dynamics using soil type and rainfall information only
i
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pacitor — global applications

f High resolution soil maps Local atmospheric demand (ET,) Spatially and temporally
- characteristic depths (L) (affects dynamics small effect on losses) resolved precipitation input
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* Lehmann et al. (2018) incorporated pore-scale physics to estimate
surface evaporative resistance as a function of water content and
soil texture (generalization and reducing empiricism)

* Relative evaporation rate E,, /ET, reflects how surface resistance
varies with water content and soil type — agree with observations

Surface evaporation data from Fluxnet sites differing in soil texture
were used to evaluate surface evaporation vary with water content
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Surface resistance — pore scale processes and soil type matter...
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Soil type affects surface evaporation in several ways...

* The soil textural class and rainfall patterns play important roles in surface evaporation E

|
BE | ¢ The effects of soil type are manifested in: (a) surface resistance to evaporation; (b)
: evaporation characteristic length; and (c) drainage dynamics (affect overall response)
B -« The surface evaporation resistance model was in good agreement T
. . . . E 4K(05wf)|:1+ %K g jl
| with flux tower data (Merlin et al. 2016) showing soil texture effects By _ %)
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EC - input information and parameters

* For global application of the SEC we use SoilGrids to derive a characteristic length L. and
surface resistance; climatic data for precipitation P, annual ET, and plant cover expressed
as LAl (for canopy interception and surface evaporation shading)

 Data at various resolutions — the SEC applied at 1/4° (~25 km) resolution and daily time step

Annual ET, [mm/year]

Characteristic

2000
1500
1000

=00

length L. [m]

(Or and Lehmann, 2019 WRR)



e evaporation characteristics

|
: * Global scale application of the SEC for annual surface evaporation (E) and “leakage” (F) a decade
I of climatic data linking local soil properties, vegetation LA/, precipitation (P) and potential ET (ET,)
i
|
|
| Surface evaporation E [mm/year] Ratio E/ET, [-]
i 500 [ -
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| 0 .
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* A narrow range of values: E/ET,<0.2 (global median = 0.15)

* High values of E/ET, for cooler temperatures and low ET,

0.0

1 T
0 1000 2000 3000
Annual precipitation P [mm]

e evaporation characteristics

* Global scale application of the SEC for annual surface evaporation (E) and “leakage” (F)
a decade of climatic data linking local soil, LA, precipitation (P) and potential ET (ET,)
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Latitudinal comparison with other global E estimates

* The GLEAM and PML models estimate daily land evaporation (0.25°); GLEAM uses a
multilayer bucket forced by satellite surface moisture; PML uses PM-Leuning formulation

* We separate canopy interception losses (Ei) and bare soil evaporation (Es)

Latitude [°]

Latitudinal values of soil evaporation by SEC were different than GLEAM predictions due
to attribution of E; to no-vegetation pixels only! SEC estimates closer to PML (PML tend to
overestimate E in Tropical regions due to ignoring surface shading by evaporation)

(a)

200
Annual evaporation [mm/year]
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Surface evaporation in arid regions — the SEC model

* One third of global land surface is arid supporting fragile and water-limited ecosystems
* Arid regions characterized by high ET, greatly exceeding annual rainfall P (P/ET, aridity index <0.2)
* |n arid regions surface evaporation E often dominates soil water regime with infrequent rainfall

* The fraction of rain water that percolates into deeper layers F and become sheltered from surface
evaporation is a complicated function of rainfall patterns, topography, vegetation and soil texture

* We seek to address the question — how much of arid region rainwater is sheltered or protected
from surface evaporation? (hence could become available for plant uptake, storage or recharge)
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Define a local and dynamic
Y surface evaporation capacitor

b £ E[I L. /3 E!l

-

redistribution |
& evaporation

field capacity

@

Interception losses negligible in arid regions
Stage-2 evaporation - very important
Rainfall characteristics — very important

ration E for global arid regions

* We applied the SEC model using soil properties and climatic data to estimate soil water
dynamics for arid regions globally (P/ET,<0.2) - 10 years climate and rainfall at %4° resolution)

Precipitation
(mm/year)

400

300

200

100

(Lehmann et al. 2019 GRL)




Rainfall partitioning in arid regions — bare soil (no vegetation)

* Both lysimeter data and SEC estimates confirm existence of a rainfall threshold (85 mm
[ y
Y for “triggering” water leakage F into deeper soil layers (protected from surface
i evaporation but not from plant water uptake)
* The spread in SEC estimates is due to soil type and rainfall characteristics
| P yp
|
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(Lehmann et al. 2019 GRL)
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SEC estimates of F (leakage)

i
R * The DRI lysimeter study have shown that rainfall variability affects F, the leakage below the
i capacitor layer (i.e., only 3 rainfall events in a decade contributed to F)
i
i * Global SEC application and rainfall record show that (estimated) leakage F or water protected
i from surface evaporation, increases with rainfall STD o, and mean monthly amount P,,.,,,
i
i
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Effects of soil texture on F

* In addition to climatic effects, rainfall partitioning is sensitive to soil texture (affecting

i . : ) .
W drainage rates, water retention, surface resistance and characteristic length)
: * Sand is the dominant soil texture in many hyper-arid regions
| * Loamy soils have higher storage capacity and require larger rainfall events to trigger “leakage”
* Global mean ratio in arid regions is 0.14 (similar to F/P=0.11 found in the lysimeter study
i Global F/P rat d 0.14 lar to F/P=0.11 found in the | ter stud
i
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Can “protected” storage F predict arid land vegetation capacity?

* Considering SEC leakage F available for plant water uptake, it may offer a simple estimate for

transpiration T and vegetation carrying capacity for arid landscapes (i.e., GPP

i

U . . : . o

gl ° Totest the idea, we converted SEC F estimates using WUE (Berry and Roderick, 2004) to arid regions

U GPP (comparing MODIS, model and Sala et al. 1988) — tests of WUE and surface runoff effects are needed

i
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Summary and conclusions

* Pore scale evaporation physics are used to address the challenge of separating ETto Eand T
components to better constrain evaporative pathways independently (beyond PM closure)

* A soil-specific evaporative characteristic length is used to define a near-surface evaporation
zone with consideration of internal drainage dynamics — both are soil type dependent

The model was tested in the lab and was generalized to the soil evaporation capacitor (SEC)

* The SEC provides an estimate (upper bound) for surface evaporation combining an
analytical model with precipitation, potential ET and soil type (+ LAl vegetation cover)

» Tests of the SEC using literature and lysimeter data support the feasibility of the method

* Soil texture affects surface evaporation via (1) resistance, (2) capillary length (3) dynamics
* Globally, E/ET, ratio exhibits remarkably narrow range irrespective of rainfall or soil type

* Application of SEC to arid region evaporation — improved understanding rainfall partitioning
and potential prediction of landscape vegetation carrying capacity from “leakage”
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