

MOSES

Modular Observation Solutions for Earth Systems

Events and Trends: Impact of Disturbances on Earth Systems

HelmholtzZentrum münchen

Helmholtz-Gemeinschaft - Forschungsbereich Erde und Umwelt

Scientific Case

Overarching Research Question

Interactions of short-term EVENTS and long-term TRENDS across Earth compartments

Events

- Heatwaves
- Hydrologic Extremes
- Ocean Eddies
- Thaw Events Permafrost

Event-driven Observation Concept

Captures processes and impacts by an "event chain" approach

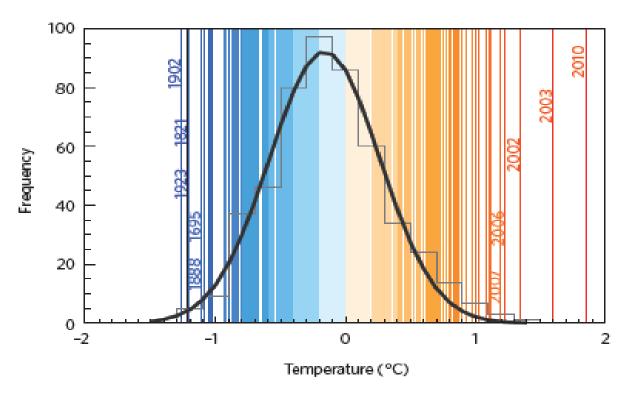
Evaluation Concept EVENTS & TRENDS

Integrates MOSES event data into large-scale and long-term monitoring networks which serve as reference systems

MOSES Reference Systems

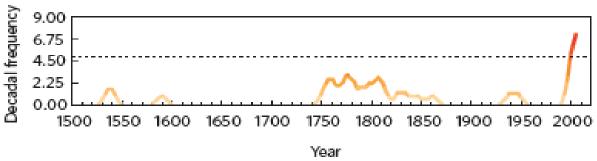
Helmholtz Observatories: Cape Verde, COSYNA, Lena Delta, TERENO

- Central sites for MOSES implementation phase
- Target areas for MOSES operation phase

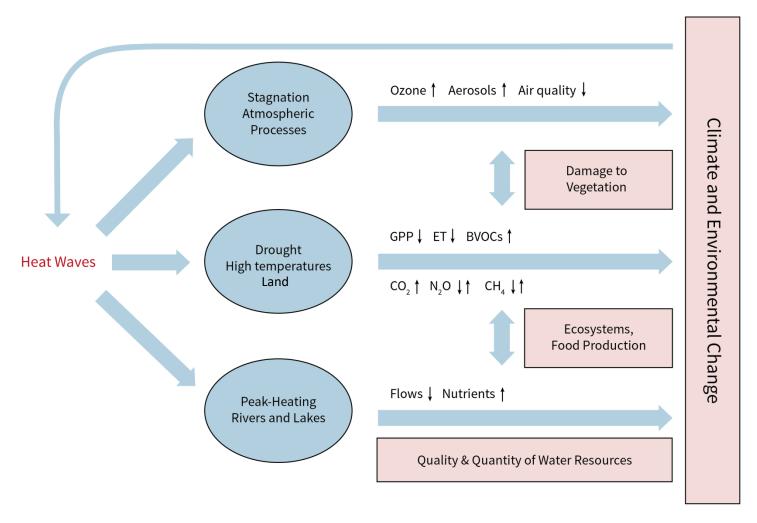

International Monitoring Networks: ICOS, FLUXNET, LTER, EuroGOOS, ...

- Long-term monitoring data
- Target areas for MOSES operation phase
- MOSES extends and complements the existing observation capabilities by event-oriented observation systems

Satellite Missions: MODIS, Sentinels, EnMAP, GRACE-FO, TANDEM-L, ...

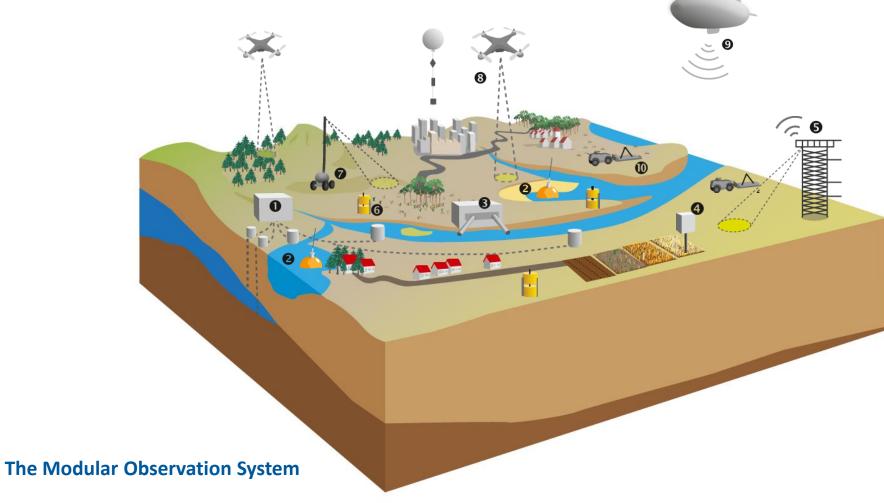

- Large scale monitoring data
- Multi-parameter monitoring data
- ACROSS + HGF Alliance "Remote Sensing" link in-situ with satellite data

Example: Heatwaves in Europe


recent heatwaves in Europe:

- 2015
- 2017

Coumou and Rahmstorf, A Decade of Weather Extremes, Nature Climate Change, 2012


Event Chain Heatwaves

blue: direct impacts and possible long term feedbacks

red: socio economic impacts

MOSES Campaign Heatwaves

- Water Balance Module: Gravimeter (6), Cosmic Ray Sensors (4), mobile Geophysics (10), Flux Towers (5,7)
- Biota Module: Hyperspectral and IR Sensing of Vegetation (8,9), mobile Mesocosms (3), online Metagenomics (1)

• ...

MOSES Modules

MOSES Module	Consortium	Heat Waves	Hydrologic Extremes	Ocean Eddies	Thaw Events Permafrost
Autonomous Vehicles	GEOMAR, HZG		Х	X	X
Fixed Point Observatories	AWI, GEOMAR, HZG		Х	Х	Х
Coastal and Marine Mobile Systems	AWI, GEOMAR, HZG		X	Х	Х
Permafrost Thaw and Subsidence	AWI, GFZ	X	X		Х
Flow and Sediment Dynamics	AWI, GFZ, UFZ	X	X		Х
Biota	AWI, HMGU, UFZ, KIT, FZJ	X	X		
Water Balance	GFZ, FZJ, UFZ	Х	Х		Х
Soil and Water Quality	HMGU, UFZ	Х	Х		
Land-Atmosphere Fluxes	KIT, FZJ, UFZ, GFZ	X	X		Х
Atmospheric Dynamics	FZJ , KIT	X	X	(X)	
Atmospheric Chemistry	FZJ, KIT	Х	Х		Х

DLR will run an airborne TANDEM-L System

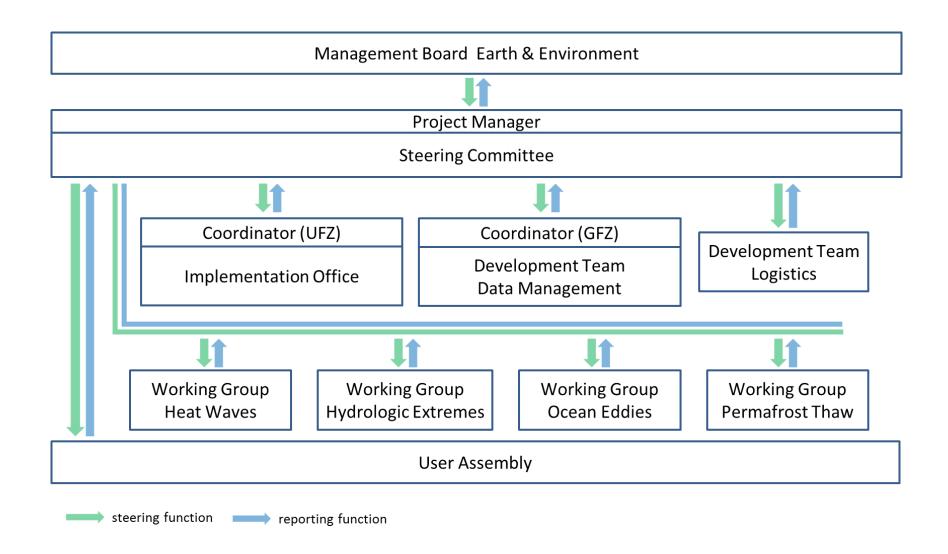
Technical Innovation

Improvement and Adjustment of Existing Systems

For modular and multi-purpose use

Minimization of Sensor Systems

For installation on mobile carriers and building multi-sensor systems


Automation of Observation Systems

For intensive field campaigns and use in areas of difficult access

Cost Efficient Observation Systems

By developing low cost systems and multi-purpose operation

MOSES Governance

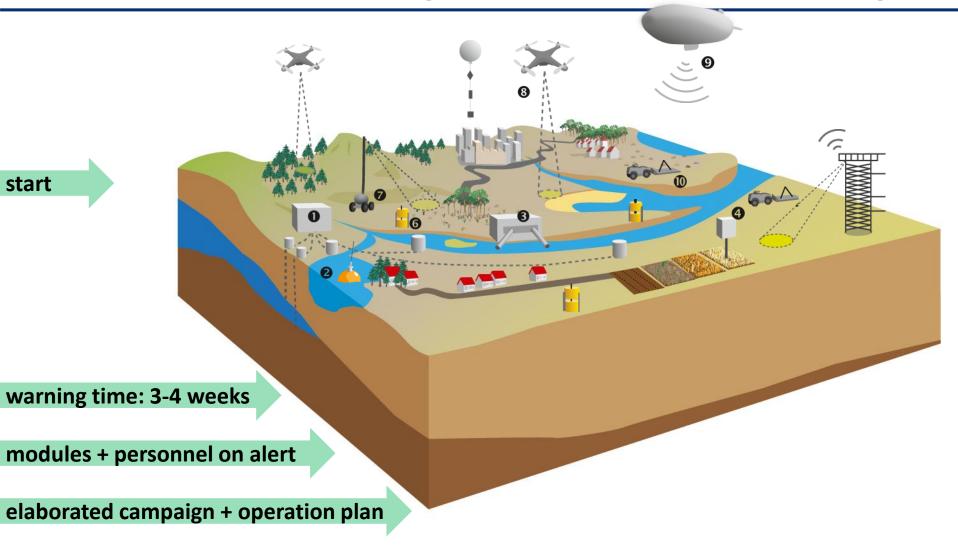
MOSES Steering Committee

Center	Representative	2nd Member	
AWI	Philipp Fischer	Julia Boike	
FZJ	Harry Vereecken	Martin Riese	
GEOMAR	Jens Greinert	Arne Körtzinger	
GFZ	Bruno Merz	Jörn Lauterjung	
HMGU	Jörg-Peter Schnitzler	Christian Griebler	
HZG	Burkard Baschek	Holger Brix	
KIT	Hans-Peter Schmid	Christoph Kottmeier	
UFZ	Peter Dietrich	Sabine Attinger	
DLR	Irena Hajnsek	Andreas Reigber	

Concept (!) for MOSES Campaign Management

1. Conception and Planning

- MOSES Campaign: Concept and operational plan are developed bottom up by a HGF consortium + partners
- Steering Committee: checks quality and feasibility, assigns time frame



2. Operation

- Ocean Eddies and Permafrost: reliable time frame
- Heatwaves and Hydrologic Extremes: reserved timeframe, observation systems and personnel are on alert
- Campaign duration: several months
- 1-2 full campaigns per year

A coordinated use of observation systems might be possible during idle times

Concept (!) for Conducting a MOSES Heatwave Campaign

MOSES Goals

technical and scientific

- Implement a novel observation system for dynamic events: highly mobile, flexible, high resolution, along and across compartments
- > Complement and extend the existing international monitoring networks
- Improve process knowledge: Impacts auf distinct events on regional to global Earth- and Environment development
- Improve models and forecasts: Integration of highly dynamic events and their feedbacks in Earth System Modelling

societal

- Improve early warning and direct actions
- Improve forecasts and scenarios on Global Change

building capacity

Offer a transdisciplinary and cutting edge research infrastructure

Overview

System of Systems

mobile, flexible, cross-compartment

Operation

various events and regions

Challenges

development of modules for flexible operations,

conduct event-driven campaigns

Milestones

2017

2018

2019

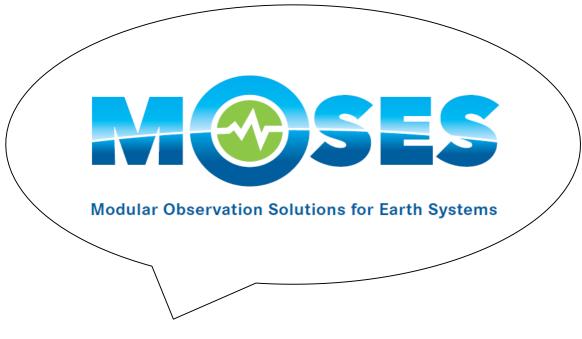
2020

2021

develop modules

develop and extent data management

conduct and optimize test-campaigns


→operation

vision: extension via national roadmap

Costplan

28 Mio.€, 8 centres + DLR, 5 years for implementation

Thank You for Your Attention

questions?