

Constraining a water stress function in a crop growth model using sun-induced chlorophyll fluorescence

Simon De Cannière, Michael Herbst, Pierre Defourny, Harry Vereecken, François Jonard

Drought is an increasingly relevant problem in modern agriculture

- 75% of global cropland
- affected
- 10% crop yield loss on average

Kimm et al., 2019

Fluorescence: a remote sensing signal linked to photosynthesis

Fluorescence drought reaction

- H₂O and CO₂ are jointly exchanged through stomata
- Plants close stomata in to save water
- Stomatal closure reduces CO₂ uptake, photosynthetic rate, increasing heat dissipation lowering, fluorescence emission
- Overall hypothesis: SIF is reactive to soil moisture and atmospheric dryness (VPD) conditions

SIF is an emerging signal for measuring photosynthetic efficency

Maxwell & Johnson, 2000

FloX, JB hyperspectral, Düsseldorf, DE

Interpretation of the SIF signal

We need to consider both dynamic canopy structure and leaf physiology when interpreting canopy-scale SIF data

AgroC is a state of the art crop growth model

Coupling the AgroC and SCOPE models

Coupling the AgroC and SCOPE models

Consider dynamic canopy structure (leaf hanging, leaf rolling, ...)

Field experiment to check model approach

Check fluorescence model with field spectrometer

August 2019

Measure water and carbon fluxes

March-November 2019

Goal: evaluate (I) capacity of ϕ_F to constrain stress factor (II) improvement in carbon flux estimation

Modelling fluorescence during measurment period

Comparison field data and modeled ϕ_F

- Inserting Feddes stress factor in photosynthetic equations improves φ_F estimation
- Period in which SIF data are taken is a lot shorter than the growing season

Calibrating h₃ improves NEE estimation

- Improvement mainly visible in the mid-season
- Mid-season is the hottest time of the year
- Improvement of stress factor leads to better CO₂ fluxes during stress

Take home message

- Sun-Induced Chlorophyll Fluorescence (SIF) is an emerging remote sensing signal, providing information on photosynthetic efficiency
- Inserting Feddes stress factor in photosynthetic equations improves ϕ_{F} estimation
- Improving the parametrization of the Feddes stress function improves the carbon flux estimation over the whole growing season