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History of global land surface modeling !

Fisher & Koven (2020)



Land surface model

Global 
land surface 
models

⇒ Solve for Energy / Water / Carbon / Nitrogen budgets



URGENT need to reduce uncertainty in global carbon sink projections!

source of CO2

sink of CO2

Friedlingstein et al. 
(2014)

~14.5PgC

Vivek et al. (2020)

CMIP5 CMIP6



Recent large increase of available observations !

Large / Numerous in situ data networks Satellite observations
Increasing data stream

large increase in spatial resolutionFluxNet measurements
Soil Chamber measurements

Manipulative experiments
(ex. FACE, …)

Surface Soil Moisture
Network

International Tree Ring
database (ITRDB)



We can use data assimilation to reduce parameter uncertainty in 
global land surface models

Sequential:
one at a time

common in state 
estimation

Variational:
full window
common in 

parameter estimation



Bayesian cost function

J(𝒙) = ½( 𝒚-M(𝒙) )TR-1( 𝒚-M(𝒙) ) + ½( 𝒙-𝒙b)TB-1( 𝒙-𝒙b)

Vector of 
parameters

Observations
e.g. data from International 
Soil Moisture Network

Model output given the 
set of parameters x
e.g. modelled soil moisture

Error covariance 
matrix

Mismatch between 
the observations 
and the model

“Background” parameters 
i.e. default parameter 

values

Mismatch between 
the parameters tested 

and their values 



Various methods…

Various algorithm…

Gradient 
descent 

Particle filters
Genetic 

algorithm
……..

● Tangent linear 
/ Adjoint

● Emulation

● Ensembles

● Machine learning

MCMC



Outline…

• Motivation for Data Assimilation (parameter calibration)

• Highlights of scientific results and issues linked to parameter optimisation
(biased with examples from the ORCHIDEE model)

 
• Remaining key challenges & Upcoming opportunities



Which parameters to optimise ?



è Morris’ method allows us to identify to the most sensitive parameters !

Need to use parameter sensitivity analysis

LST sensitivity SSM sensitivity

Photosynthesis & Respiration Soil moisture

Bare soil

most

most

leastleast

Tropical broadleaf raingreen

Temperate broadleaf deciduous

Natural C3 grass

Natural C4 grass

C3 Agriculture

ORCHIDEE Parameters for Surface Temperature / Surface soil Moisture
Morris
O(100)



Sobol’s method allows to capture the interactions between the parameters

Novick et al. (2022)

Sobol
O(10,000)

Need to use parameter sensitivity analysis



Pseudo-data experiment (with known True parameters) !

è Pseudo-data experiments is highly recommended !
- Create peusdo – obs with perturbed parameters
- Try to retrieve the True param starting with different first Guess !

Example: ORCHIDEE model, 5 parameters ;  1 year of GPP pseudo data ;  200 first-guess tests 

True Param    Posterior Param



Which metrics (for a given data stream) ? 



Which metrics and which cost function ?

Observation operator:
● Need for robust operator (spatially & temporally)

● Need to minimize the influence of model and observation biases !

● Need to characterize accurately model and observation errors as well

as error correlations

Cost function : 
● Quadratic or least absolute value or ??



Example (1 site): In situ Surf. Soil Moisture data / ORCHIDEE model SSM

Case study with Surface Soil Moisture
SS

M
 (m

3
/ m

3 )

Large 
biais !



Example (1 site)
Surf. Soil Moisture:
In situ SSM
ORCHIDEE SSM

ØUnbiased RMSE 

Ø or CDF matching of SSM data

Ø or measure of dry down rate (exponential fit “Tau”)

Treat biases using either

SS
M

 (m
3  /

 m
3 )

è Depend on the objectives

Case study with Surface Soil Moisture



Optimisation

● Optimised 𝛕 values

● Bias corrected runs 
shown

● 37% improvement in 
correlation over the 
whole period

Example over US-Whs: Walnut Gulch Lucky Hills Shrub

Calibration:
32% RMSD reduction

Evaluation:
49% RMSD reduction

Raoult et al. (2020)



● Model tends to dry 
out faster/slower 
depending on sites !

● Too small sample of 
sites to conclude  
about vegetation, 
soil texture or 
climate factors

Optimization with in situ data

Length 
of dry 
period

⇒ Calibration against “Tau” (or “raw SSM”)
at ‘18 sites with SSM & FluxNet data’ 

Raoult et al. (2021)



Single vs Multiple sites optimisation ?



Single site vs Multi site optimization

Assimilation
Of NEE and LE 

fluxnet data
≈ 15 params / PFT

Ex: Harward forest : Temperate Broadleaf decidious forest (12 sites)

NEE (gC/m2/d) LE (w/m2)

Data Prior Single site optim Multi site optim (15 sites)



Single site vs Multi site optimization

Assimilation
Of NEE and LE 

fluxnet data
≈ 15 params / PFT

Ex: Harward forest : Temperate Broadleaf decidious forest (12 sites)

NEE (gC/m2/d) LE (w/m2)

Data Prior Single site optim Multi site optim (15 sites)

è DA to highlight model deficiencies !



Variability of the parameter estimates with site

@Kuppel et al. (2012)

12 Temperate Broadleaf
forests sites

Single site vs Multi sites optimisation

è Multi-site parameter

values (black symbols) 

are often NOT 

the mean of the single site 

values (colored symbols) ! 



Single vs Multiple data-stream assimilation



NOAANASA JPL

MODIS

Sequential
approach

Simultaneous
approach

@Bacour et al. (2023)

@Peylin et al. (2016)

Multiple constraints on global carbon stocks and fluxes
Satellite NDVI FluxNet C/W Atm. CO2



Multiple data streams assimilation 

Step 1: 
MODIS-NDVI
4 params / PFT

Temp 
DBF

Bor DBF

Prior
Post
Obs

Zeng et al. 2023

è NDVI is now often replaced by Solar Induced Fluorescence (OCO2; TROPOMI, GOME)



Multiple data streams assimilation 

Step 1: 
MODIS-NDVI
4 params / PFT

Temp 
DBF

Bor DBF

Prior
Post
Obs

Step 2: 
75 fluxnet data
≈ 20 params /PFT

Step 3: 
Atmospheric data
≈ 100 params total

Ex: Harward forestNEE (gC/m2/d) LE (w/m2)



Multiple data streams assimilation 
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Bacour, C., et al. (2023)
Flux NDVI

CO2

Flux
 + NDVI

Flux
 + CO2

NDVI +
 CO2

Flux
 + NDVI +

CO2

Flux
 + NDVI +

CO2

(2 
ste
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Simultaneous assimilation of
all or a few data streams

èDifferent combinations can 
give different results…

èUsing only one data stream
may degrade the fit to others

1 data
stream

2 data
streams

3 data
streams

Net C flux (NEE) – FluxNet

M
is

fit
R
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Combining multiple data streams is key to get meaningfull global C fluxes !

è Different combinations can give different parameter values 

è Nee at least Atmospheric CO2 data to have robust global NEE budget !

Bacour et al. (2023) 
Biogeosciences

Ex. of Q10 param.

NEE

GPP



Data Assimilation to highlight ecological
relationships



Process understanding

Ecological consistency of optimized trait-related parameters

Ø Optimized parameter values consistent with leaf-scale
traits and well-known trade-offs observed at the leaf
level

Ø Sensitivity of trait-related parameters to local bio-climatic
variables > reproduce observed relationships
between traits and climate

Ø Indirect validation of the main GPP-related
processes implemented in ORCHIDEE

Yearly averaged soil
humidity

Mean annual temperature (°C)

Relative precipitation

Mean temperature of the 
coldest month(°C)

@Peaucelle et al. (2019)

Assimilation of GPP data / 371 site-years estimates
14 parameters linked to C assimilation



Assimilation of present-day observations

does not guaranty improved future simulations !



Assimilation of present-day observations

does not guaranty improved future simulations !

Model improvement when assimilation LE and GPP over 
FLUXNET broadleaf sites

Ex: Harward forestNEE (gC/m2/d) LE (w/m2)



The addition of Free Air CO2 Enchirement data to the optimisation
increases confidence in the optimised model’s projections

N
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1% CO2 increase per year

Raoult et al. (submitted)⇒ ORCHIDEE - CN prior underestimates the change of NPP with doubling CO2

DUKE forest (Temp. NeedleLeaf)



Outline…

• Motivation for Data Assimilation (parameter calibration)

• Highlights of scientific results and issues linked to parameter optimisation

• Remaining key challenges & Upcoming opportunities



Ø  Model overfitting è degradation of some skills !
 Largely linked to equifinality !

Ø  Including the Spin up in model calibration
- Crucial for the carbon cycle and soil C pools
- Difficult because of computing time !

Remaining key challenges 

Parameter error covariance matrix

Make use of 



Ø  Model overfitting è degradation of some skills !
 Largely linked to Overfitting !

Ø  Including the Spin up in model calibration
- Crucial for the carbon cycle and soil C pools
- Difficult because of computing time !

Ø  Assimilation of Biomass C pools 
 rarely attempted but key for the C cycle

ØMixing param and state variable optimisation 
to learn on missing processes 

Remaining key challenges 

Parameter error covariance matrix

Make use of 

Valoraise satellite 
data

Yang et al., GCP (2019) 

GlobBiomass (Obs)
DGVMs (Trendy)



Learning the spatial variability of photosynthesis parameters
Shanning Bao1,2 and Nuno Carvalhais1

Aim: to predict parameters of photosynthesis model using vegetation + climate + soil properties and constrained by model loss.

[Bao et al., 2023, JAMES]

Machine Learning algorithms to support parameter optimization

è Hybrid modeling : 

Process-based vs  statistical modeling



GPP = εmax ∙ PAR∙FAPAR∙ fT ∙ fVPD ∙ fW ∙ fL ∙ fCI

[Bao et al., 2023, JAMES]

● Semi-empirical descriptions of “ f ”
○ Sensitivity of ecosystem GPP to different forcing (climate, soil,.. )



● Semi-empirical descriptions of “ f ”
○ Sensitivity of ecosystem GPP to different forcing (climate, soil,.. )

GPP = εmax ∙ PAR∙FAPAR∙ fT ∙ fVPD ∙ fW ∙ fL ∙ fCI

[Bao et al., 2023, JAMES]

è Learn (NN) the spatial distribution of photosynthesis parameters from FLUXNET 
GPP observations



GPP = εmax ∙ PAR∙FAPAR∙ fT ∙ fVPD ∙ fW ∙ fL ∙ fCI

[Bao et al., 2023, JAMES]

Classical PFT 
approach

Maps of param. 
distributions

Evaluation of model performances
(at Fluxnet sites)

εmax



è History Matching provides an alternative Bayesian approach 
to model calibration

Bayesian Calibration
Find likely parameters 

minimising a cost function

History Matching
Rule out unlikely parameters 

using an implausibility function

I(x) =               𝒚 - E[M(𝒙)]
√Var[M(𝒙))] + Var[e] + Var[𝜂]

New DA methods emerge with the use of emulators !



History matching: based on Gaussian Emulators



History matching

Twin experiment
(known param values):

• After 20 waves
removed 7/8 of space
as highly unlikely

• True values are in 
highly plausible 
space

è Advantages: ability to tune against multiple metrics
è Easy to generate ensemble from posterior distribution



Summary and key issues 
ØData assimilation (parameter optimisation) should play a big role in reducing 

uncertainties and inter model spread in model predictions of C / W / E fluxes

ØHowever, model structural error is a critical issue with parameter optimisation !
And “overfitting” often breaks the overall model skills !

ØAvailable in situ and satellite data are still largely under-used
to calibrate global land surface models 

ØModel improvement should be a central part 
of the process! when optimisation fail to fit 
the observations è Highlight structural errors 
or forcing errors !

Model development

Parameter optimisation



Thank you ….

https://hydro-jules.org/international-land-
modeling-forum-ilmf?utm_source

https://land-da-community.github.io
https://aimesproject.org/ldawg/

è Welcome to join international initiatives on Data Assimilation

https://land-da-community.github.io/
https://aimesproject.org/ldawg/


Additional slides



New methods

▪ Essentially 4DVar without needing an adjoint or TLM
▪ Ensemble generation and analysis are completely separate
▪ We typical use 20-50 ensemble members (can be slow), depending on problem
▪ But analysis step is extremely fast

- Don’t need to run the model!
- 9M observations in a few minutes for Africa example

▪ Consequently, once an ensemble is built it is possible to run multiple experiments
with it (to examine the impact of different observations) 

▪ https://github.com/tquaife/4DEnVar_engine

https://github.com/tquaife/4DEnVar_engine


New data are coming with associated challenges !

Guanter et al. (2012)

Solar Induced fluorescence (SIF) Satellite biomass data Satellite XCO2 data 

Yang et al., GCP (2019) On-Going work

GlobBiomass (Obs)
DGVMs (Trendy)



State Data Assimilation for updating C stocks and fluxes with CLM



“Big leaf” model Two-layer energy budget Multi-layer energy budget



Temperature 
profile at

 Tumbarumba site

Observations

Model

Daily temperature Ryder et al., 2015



Multi-layer energy budget: Local results (DE-Hai – 2004)

� Overall canopy temperature gradient dynamics well represented during 
the year;

� Intra-canopy climate well reproduced most of the time;

Normalized intra-canopy temperature gradientTemperature difference between top canopy and surface in 2004

November 2004August 2004 

54/11

Multi-Layer 
EB
Observations

Recent results in the Trunk of ORCHIDEE



Assimilation of Free Air CO2 Enrichment data (FACE)

Raoult., et al. (in prep)

è Optimisation of ORCHIDEE params (~ 20) at FACE sites (Oak Rige & Duke) with NPP & LAI 

⇒ ORCHIDEE - CN Prior 
underestimates the change of 
NPP with doubling CO2

⇒ Need to optimise against both 
Ambient and Elevated CO2 data 
to fit the observed NPP ratio

Ambiant
CO2

Elevated
CO2

DUKE (Temp. NeedleLeaf)



@Alleon et al. (in 
prep.)

• Implementation of a new physical 
scheme
linking soil water potential to leaf 
potential !

Versus a standard statistical scheme
to link leaf transpiration / GPP to soil 

moisture stress

soil moisture 

Stress
factor for 
Stomatal
conducl 

1

0

Optimisation of new hydraulic architecture



@Alleon et al. (in 
prep.)

• Implementation of a new physical 
scheme
linking soil water potential to leaf 
potential !

• Optimisation of the STD vs NEW scheme 
with 
FluxNet latent heat fluxes at site level !

==> Higher capability to model 
temporal flux variations

especially during droughts !

Broadleaf Dec Forest

Optimisation of new hydraulic architecture


