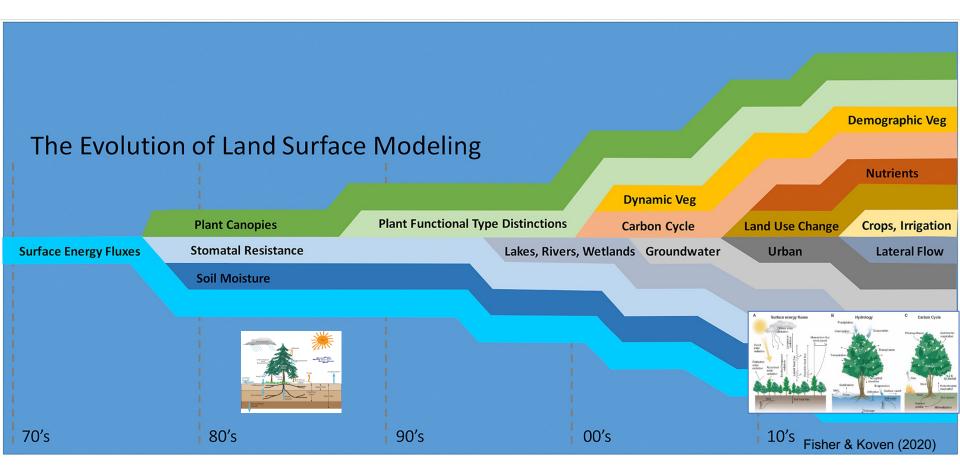


Global land surface model parameter optimisation: where we are and new opportunities ? Examples from the ORCHIDEE model

Philippe Peylin with direct contributions from Natasha McBean, Cedric Bacour, Vladislav Bastrikov, Nina Raoult, Catherine Ottle, Fabienne Maignan, Simon Beylat, Sylvain Kuppel, Nuno Carvalhais,

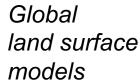
- Motivation for Data Assimilation (parameter calibration)
- Highlights of scientific results and issues linked to parameter optimisation
- Remaining key challenges & Upcoming opportunities

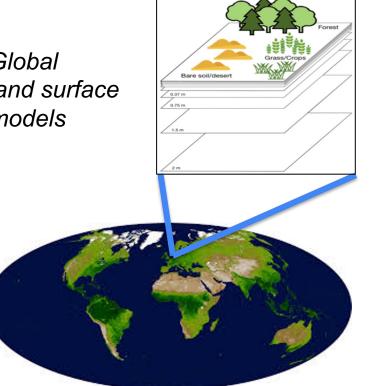
History of global land surface modeling !

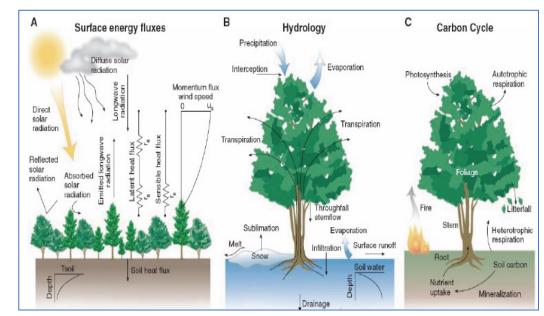


Land surface model

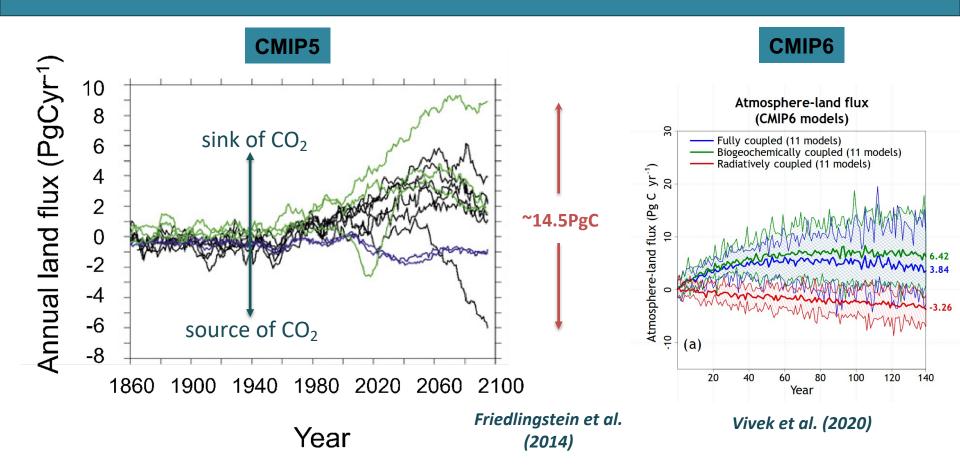
\Rightarrow Solve for Energy / Water / Carbon / Nitrogen budgets







URGENT need to reduce uncertainty in global carbon sink projections!



Recent large increase of available observations !

Large / Numerous in situ data networks

FluxNet measurements Soil Chamber measurements

Manipulative experiments (ex. FACE, ...)

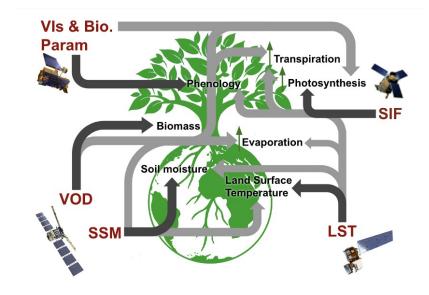
Surface Soil Moisture Network

Data Discovery Porta

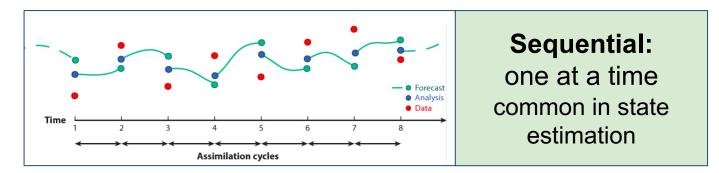
International Tree Ring database (ITRDB)

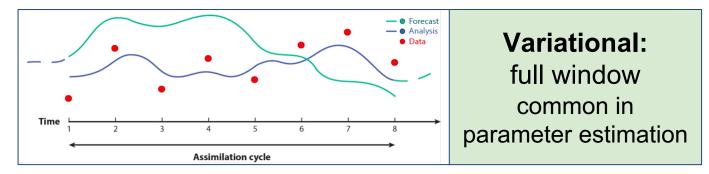
Satellite observations

Increasing data stream large increase in spatial resolution

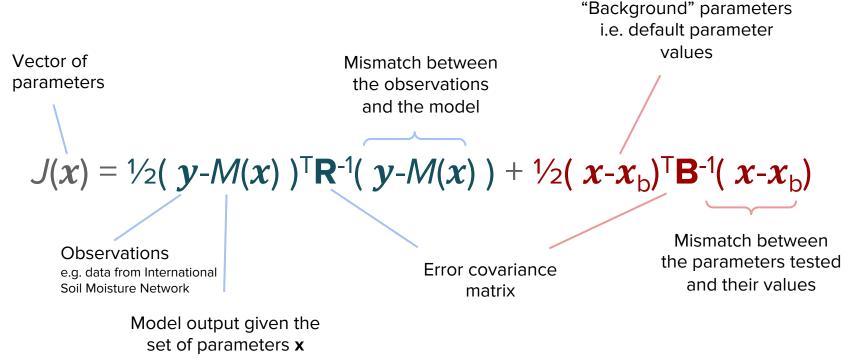


We can use **data assimilation** to **reduce parameter uncertainty** in global land surface models



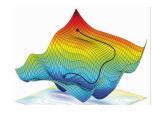


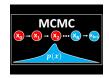
Bayesian cost function



e.g. modelled soil moisture

Various methods...





Gradient descent

Particle filters

(x)

Genetic algorithm

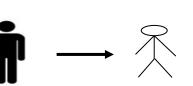
.....

Various algorithm...

• Tangent linear $\frac{dy}{dx} = f'(x)$

$$rac{dy}{dx} = f'(x) = \lim_{\Delta x o 0} rac{f(x+\Delta x)-f(x+\Delta x)}{\Delta x}$$

• Emulation



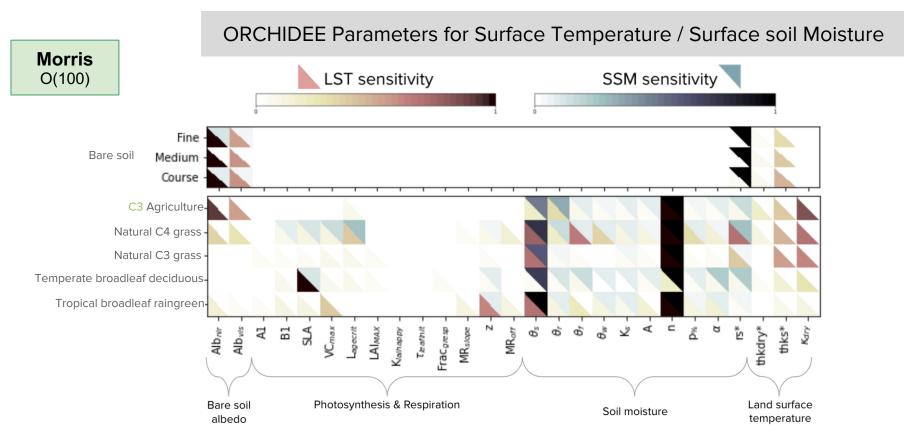
Ensembles

- Motivation for Data Assimilation (parameter calibration)
- Highlights of scientific results and issues linked to parameter optimisation (biased with examples from the ORCHIDEE model)
- Remaining key challenges & Upcoming opportunities

Which parameters to optimise ?

Need to use parameter sensitivity analysis

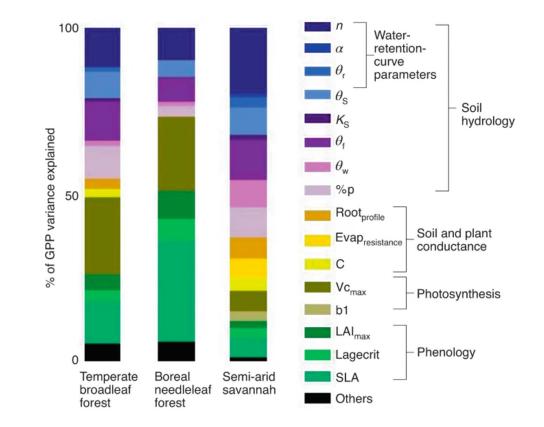
→ Morris' method allows us to identify to the most sensitive parameters !



Need to use parameter sensitivity analysis

Sobol's method allows to capture the interactions between the parameters

Sobol O(10,000)

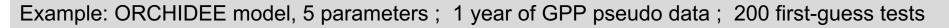


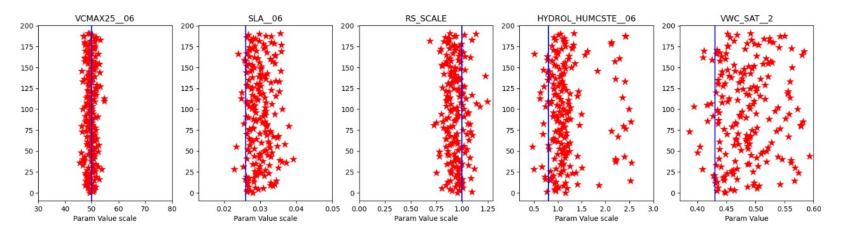
Novick et al. (2022)

Pseudo-data experiment (with known True parameters) !

→ Pseudo-data experiments is highly recommended !

- Create peusdo obs with perturbed parameters
- Try to retrieve the True param starting with different first Guess !





True Param Posterior Param

Which metrics (for a given data stream)?

Which metrics and which cost function ?

Observation operator:

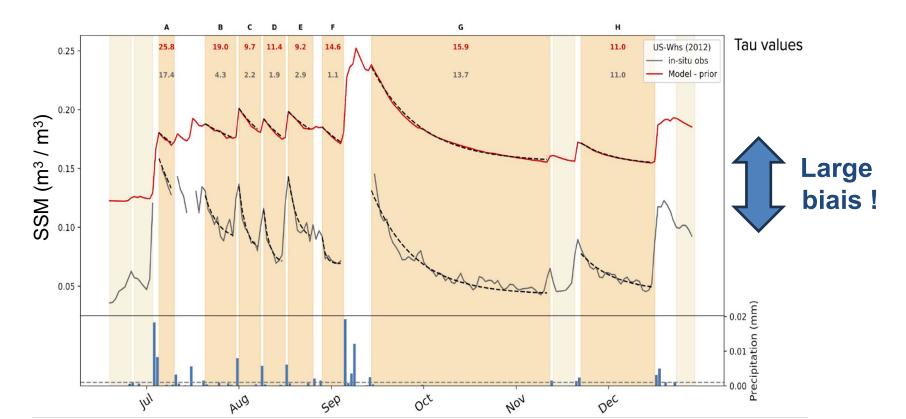
- Need for robust operator (spatially & temporally)
- Need to minimize the influence of model and observation **biases** !
- Need to characterize accurately model and observation errors as well as error correlations

Cost function :

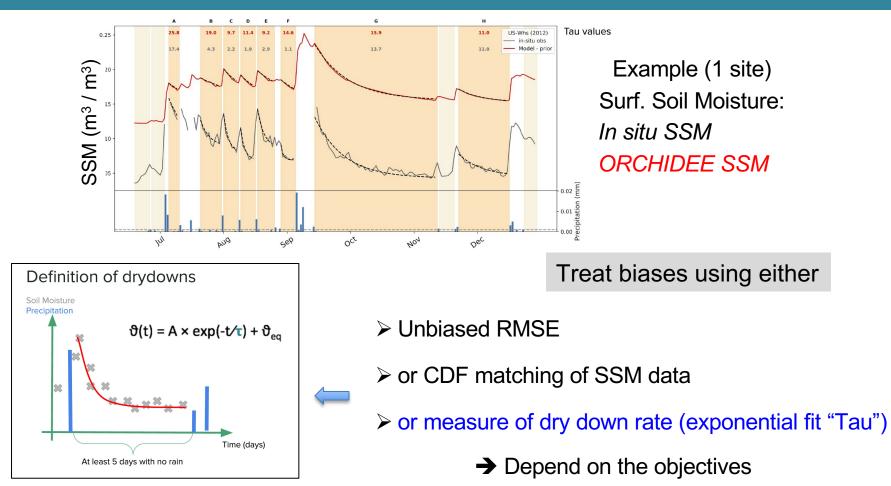
• Quadratic or least absolute value or ??

Case study with Surface Soil Moisture

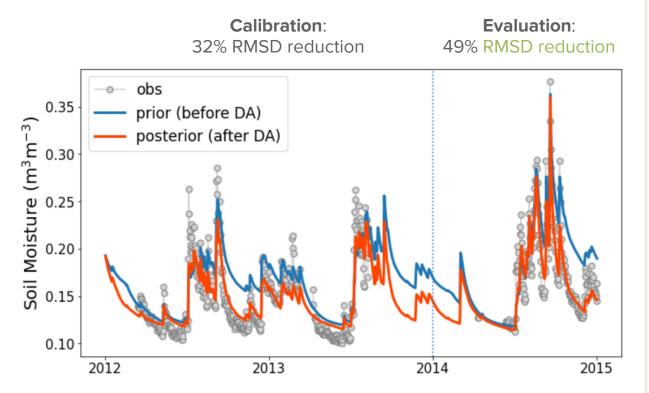
Example (1 site): In situ Surf. Soil Moisture data / ORCHIDEE model SSM



Case study with Surface Soil Moisture



Optimisation



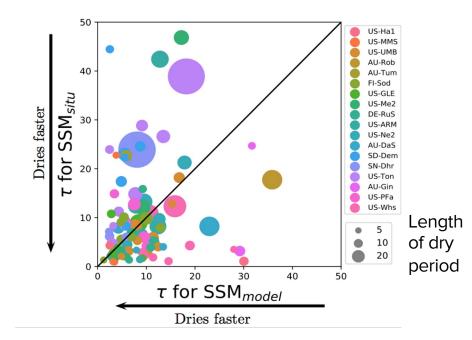
[•] Optimised τ values

- Bias corrected runs shown
- 37% improvement in correlation over the whole period

Example over US-Whs: Walnut Gulch Lucky Hills Shrub

Optimization with in situ data

⇒ Calibration against "Tau" (or "raw SSM") at '18 sites with SSM & FluxNet data'



Model tends to dry out faster/slower depending on sites !

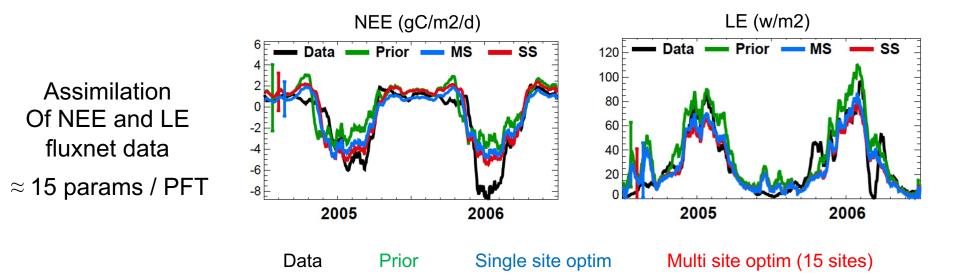
 Too small sample of sites to conclude about vegetation, soil texture or climate factors

Raoult et al. (2021)

Single vs Multiple sites optimisation ?

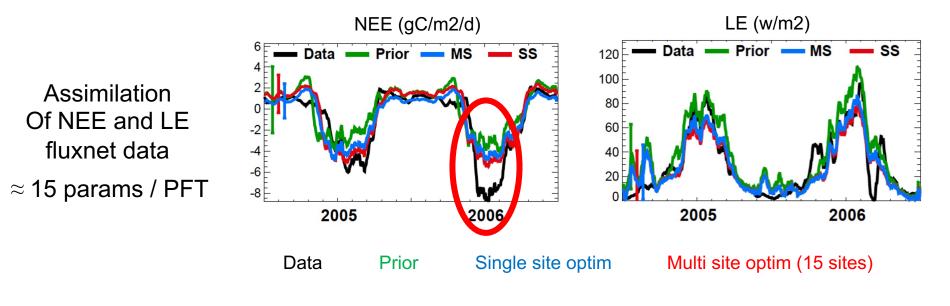
Single site vs Multi site optimization

Ex: Harward forest : Temperate Broadleaf decidious forest (12 sites)



Single site vs Multi site optimization

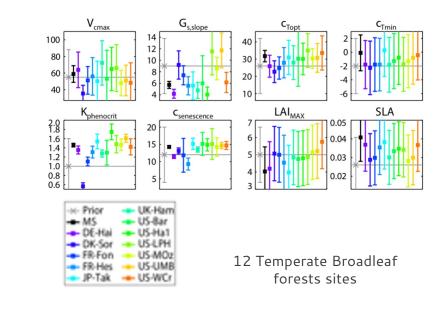
Ex: Harward forest : Temperate Broadleaf decidious forest (12 sites)



→ DA to highlight model deficiencies !

Single site vs Multi sites optimisation

Variability of the parameter estimates with site

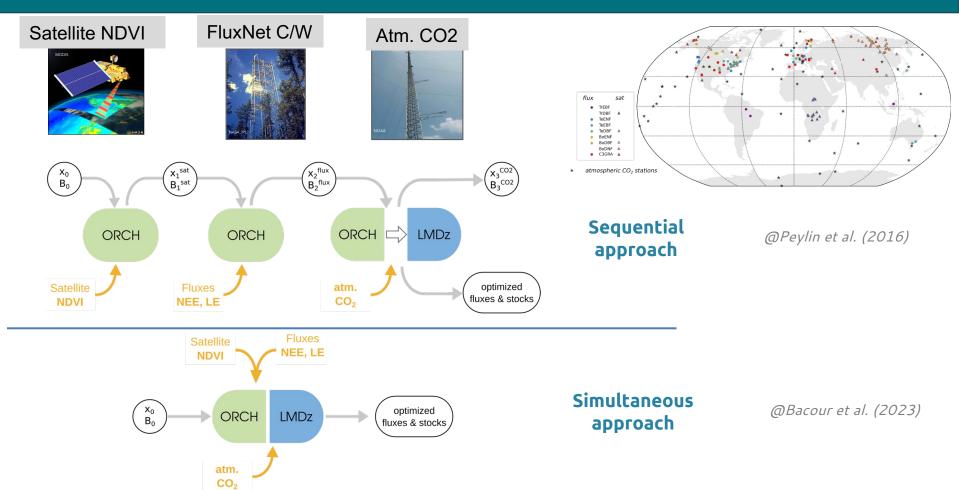


Multi-site parameter values (black symbols) are often NOT the mean of the single site values (colored symbols) !

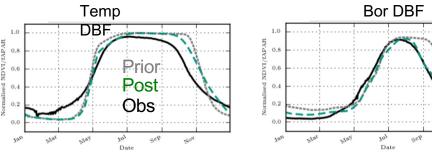
@Kuppel et al. (2012)

Single vs Multiple data-stream assimilation

Multiple constraints on global carbon stocks and fluxes

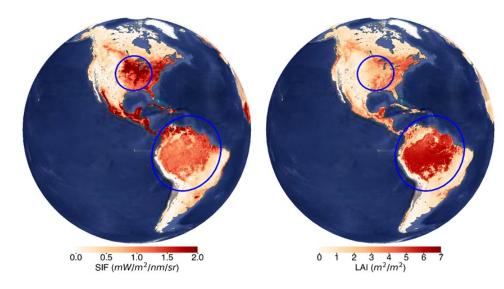


Multiple data streams assimilation



→ NDVI is now often replaced by Solar Induced Fluorescence (OCO2; TROPOMI, GOME)

Zeng et al. 2023

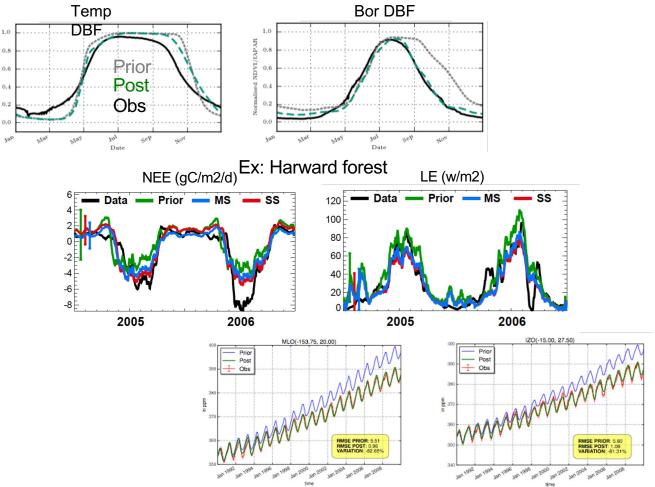


Multiple data streams assimilation

Step 1: MODIS-NDVI 4 params / PFT

Step 2: 75 fluxnet data ≈ 20 params /PFT

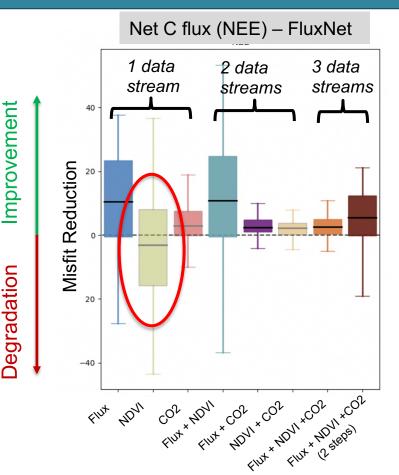
Step 3: Atmospheric data \approx 100 params total



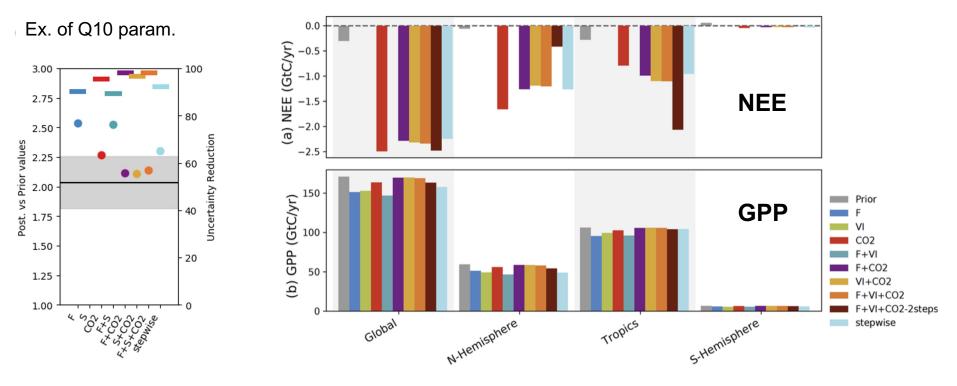
Multiple data streams assimilation

Simultaneous assimilation of all or a few data streams

- ➔ Different combinations can give different results...
- → Using only one data stream may degrade the fit to others



Combining multiple data streams is key to get meaningfull global C fluxes !



→ Different combinations can give different parameter values

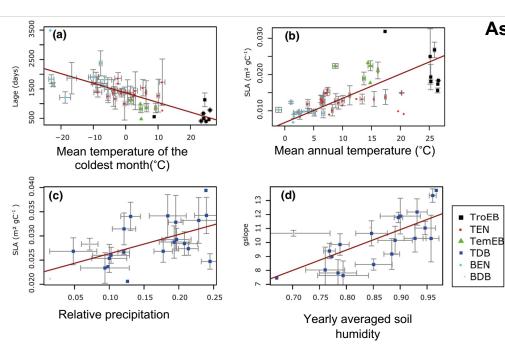
→ Nee at least Atmospheric CO2 data to have robust global NEE budget !

Bacour et al. (2023) Biogeosciences

Data Assimilation to highlight ecological relationships

Process understanding

Ecological consistency of optimized trait-related parameters



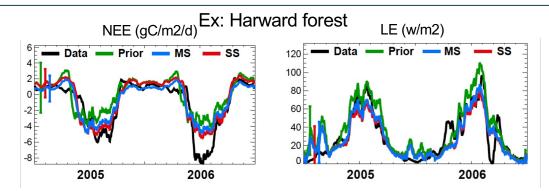
Assimilation of GPP data / 371 site-years estimates 14 parameters linked to C assimilation

- Optimized parameter values consistent with leaf-scale traits and well-known trade-offs observed at the leaf level
- Sensitivity of trait-related parameters to local bio-climatic variables > reproduce observed relationships between traits and climate
- Indirect validation of the main GPP-related processes implemented in ORCHIDEE

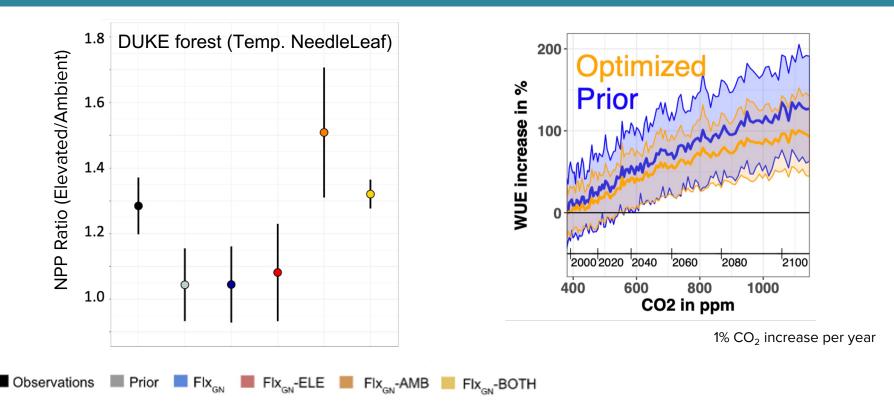
Assimilation of present-day observations does not guaranty improved future simulations !

Assimilation of present-day observations does not guaranty improved future simulations !

Model improvement when assimilation LE and GPP over FLUXNET broadleaf sites



The addition of Free Air CO₂ Enchirement data to the optimisation increases confidence in the optimised model's projections



 \Rightarrow ORCHIDEE - CN prior underestimates the change of NPP with doubling CO2

Raoult et al. (submitted)

Outline...

- Motivation for Data Assimilation (parameter calibration)
- Highlights of scientific results and issues linked to parameter optimisation
- Remaining key challenges & Upcoming opportunities

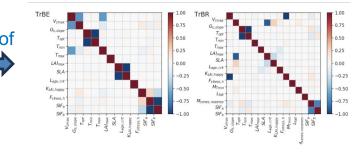
Remaining key challenges

Model overfitting → degradation of some skills ! Largely linked to equifinality !
Make use of

Including the Spin up in model calibration

- Crucial for the carbon cycle and soil C pools
- Difficult because of computing time !

Parameter error covariance matrix

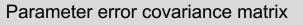


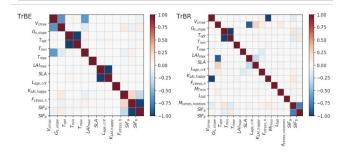
Remaining key challenges

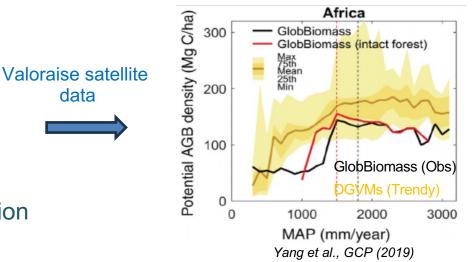
data

- Model overfitting degradation of some skills ! Largely linked to Overfitting ! Make use of
- Including the Spin up in model calibration - Crucial for the carbon cycle and soil C pools
 - Difficult because of computing time !

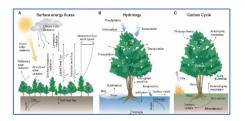
- Assimilation of Biomass C pools rarely attempted but key for the C cycle
- > Mixing param and state variable optimisation to learn on missing processes





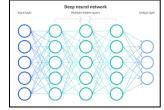


Machine Learning algorithms to support parameter optimization



→ Hybrid modeling :

Process-based vs statistical modeling



Learning the spatial variability of photosynthesis parameters

Shanning Bao^{1,2} and Nuno Carvalhais¹

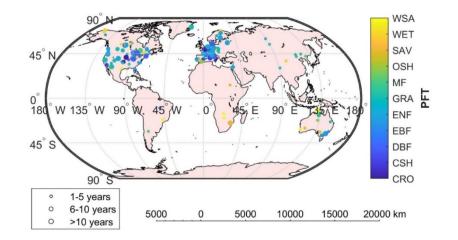
Aim: to predict parameters of photosynthesis model using vegetation + climate + soil properties and constrained by model loss.

Max Planck Institute for Biogeochemistry

[Bao et al., 2023, JAMES]

$GPP = \varepsilon_{max} \cdot PAR \cdot FAPAR \cdot fT \cdot fVPD \cdot fW \cdot fL \cdot fCI$

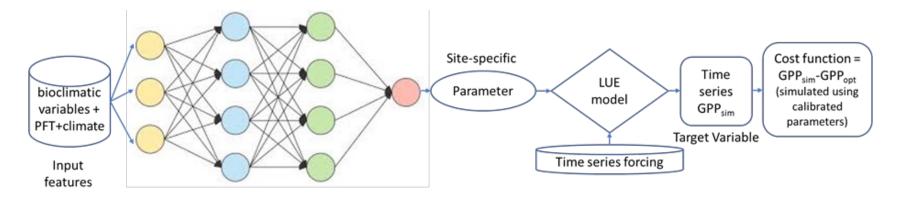
- Semi-empirical descriptions of "f"
 - Sensitivity of ecosystem GPP to different forcing (climate, soil,...)



[Bao et al., 2023, JAMES]

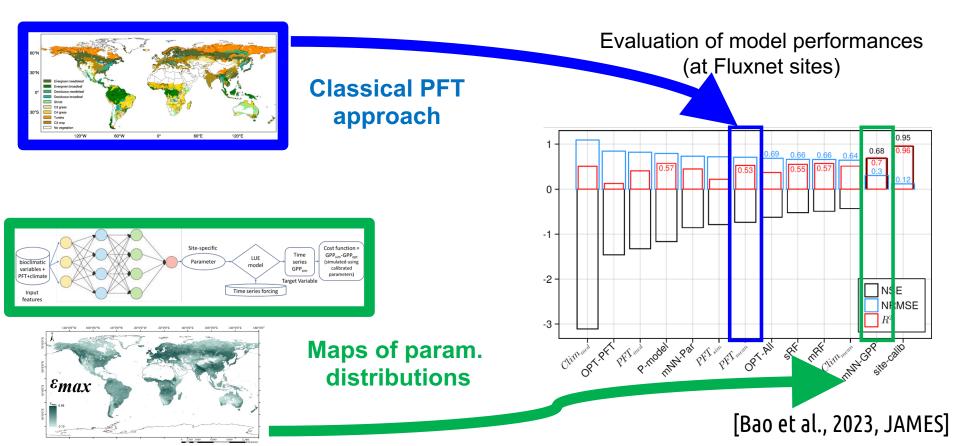
$GPP = \varepsilon_{max} \cdot PAR \cdot FAPAR \cdot fT \cdot fVPD \cdot fW \cdot fL \cdot fCI$

- Semi-empirical descriptions of "*f*"
 - Sensitivity of ecosystem GPP to different forcing (climate, soil,...)
 - ➔ Learn (NN) the spatial distribution of photosynthesis parameters from FLUXNET GPP observations



[Bao et al., 2023, JAMES]

$GPP = \varepsilon_{max} \cdot PAR \cdot FAPAR \cdot fT \cdot fVPD \cdot fW \cdot fL \cdot fCI$



New DA methods emerge with the use of emulators !

History Matching provides an alternative Bayesian approach to model calibration

$$J(\mathbf{x}) = \frac{1}{2} \left[(H(\mathbf{x}) - \mathbf{z})^T \mathbf{R}^{-1} (H(\mathbf{x}) - \mathbf{z}) + (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) \right].$$

Bayesian Calibration Find likely parameters minimising a cost function

$$\begin{split} \mathcal{I}(\mathbf{x}) &= \frac{|\mathbf{z} - \mathbf{E}[H(\mathbf{x})]|}{\sqrt{\mathrm{Var}[\mathbf{z} - E[H(\mathbf{x})]]}} \\ &= \frac{|\mathbf{z} - \mathbf{E}[H(\mathbf{x})]|}{\sqrt{\mathrm{Var}[H(\mathbf{x})] + \mathrm{Var}[e] + \mathrm{Var}[\eta]}}. \end{split}$$

History Matching Rule out unlikely parameters using an implausibility function

History matching: based on Gaussian Emulators

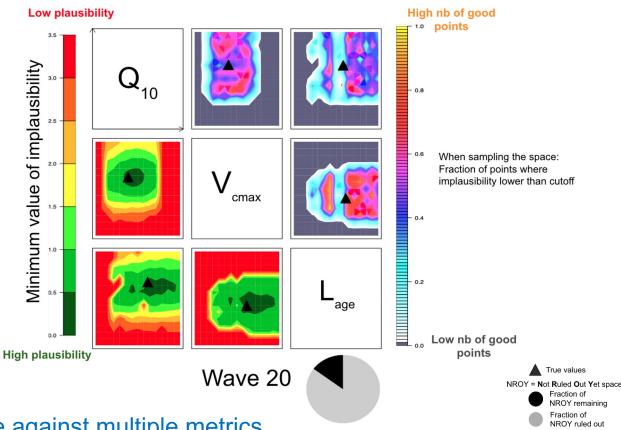


 $\mathcal{X}_{NROY} = \{\mathbf{x} \in \mathcal{X} | \mathcal{I}(\mathbf{x}) < 3^2\}$

History matching

Twin experiment (known param values):

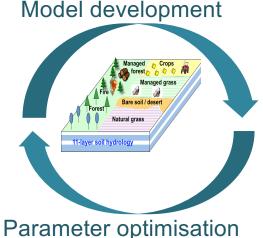
- After 20 waves removed 7/8 of space as highly unlikely
- True values are in highly plausible space



Advantages: ability to tune against multiple metrics
 Easy to generate ensemble from posterior distribution

Summary and key issues

- Data assimilation (parameter optimisation) should play a big role in reducing uncertainties and inter model spread in model predictions of C / W / E fluxes
- However, model structural error is a critical issue with parameter optimisation ! And "overfitting" often breaks the overall model skills !
- Available in situ and satellite data are still largely under-used to calibrate global land surface models
- Model improvement should be a central part of the process! when optimisation fail to fit the observations Highlight structural errors or forcing errors !



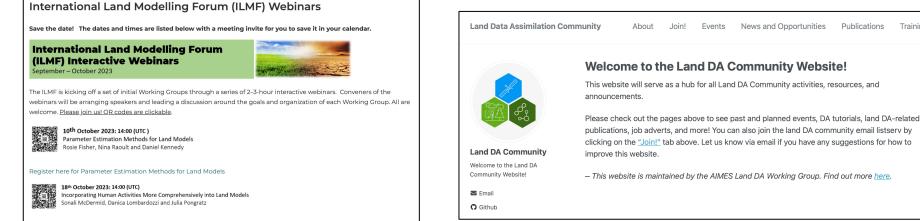
→ Welcome to join international initiatives on Data Assimilation

https://hydro-jules.org/international-landmodeling-forum-ilmf?utm source

https://land-da-community.github.io

https://aimesproject.org/ldawg/

Training



Register here for Incorporating Human Activities More Comprehensively into Land Models

Additional slides

New methods

The Land Variational Ensemble Data Assimilation Framework: LAVENDAR v1.0.0

Ewan Pinnington¹, Tristan Quaife^{1,2}, Amos Lawless^{1,2}, Karina Williams³, Tim Arkebauer⁴, and Dave Scoby⁴

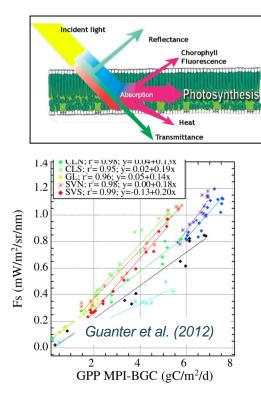
- Essentially 4DVar without needing an adjoint or TLM
- Ensemble generation and analysis are completely separate
- We typical use 20-50 ensemble members (can be slow), depending on problem
- But analysis step is *extremely fast*
 - Don't need to run the model!
 - 9M observations in a few minutes for Africa example
- Consequently, once an ensemble is built it is possible to run multiple experiments with it (to examine the impact of different observations)
- <u>https://github.com/tquaife/4DEnVar_engine</u>

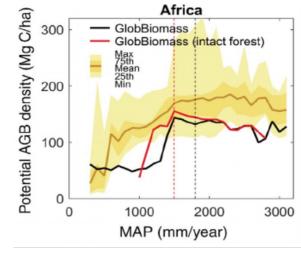
New data are coming with associated challenges !

Solar Induced fluorescence (SIF)

Satellite biomass data

Satellite XCO2 data



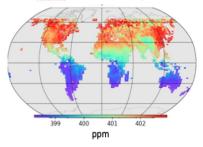


GlobBiomass (Obs) DGVMs (Trendy)

Yang et al., GCP (2019)

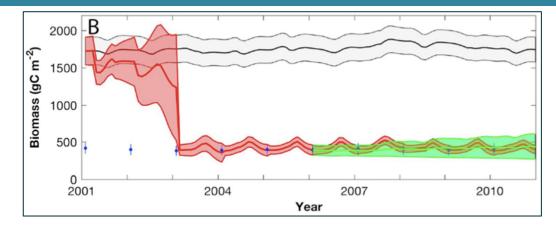
Observations (OCO-2)

Modèle ORCHIDEE-LMDZ a priori



On-Going work

State Data Assimilation for updating C stocks and fluxes with CLM



Evaluation of a Data Assimilation System for Land Surface Models Using CLM4.5

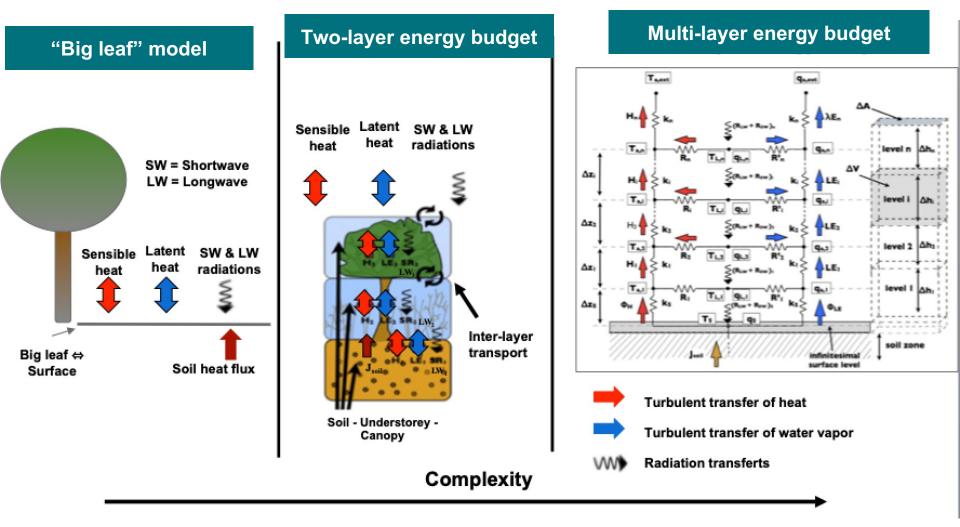
Andrew M. Fox¹, Timothy J. Hoar², Jeffrey L. Anderson², Avelino F. Arellano³, William K. Smith¹, Marcy E. Litvak⁴, Natasha MacBean¹, David S. Schimel⁵, and David J. P. Moore¹

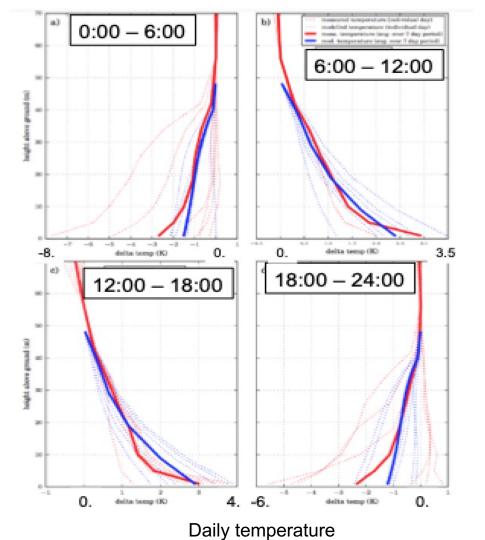
Improving CLM5.0 Biomass and Carbon Exchange Across the Western United States Using a Data Assimilation System

Brett Raczka^{1,2} ⁽ⁱ⁾, Timothy J. Hoar³ ⁽ⁱ⁾, Henrique F. Duarte^{4,5}, Andrew M. Fox⁶, Jeffrey L. Anderson³, David R. Bowling^{1,4} ⁽ⁱ⁾, and John C. Lin⁴ ⁽ⁱ⁾

Assimilation of Global Satellite Leaf Area Estimates Reduces Modeled Global Carbon Uptake and Energy Loss by Terrestrial Ecosystems

Andrew M. Fox¹ ^(D), Xueli Huo², Timothy J. Hoar³ ^(D), Hamid Dashti² ^(D), William K. Smith² ^(D), Natasha MacBean⁴ ^(D), Jeffrey L. Anderson³, Matthew Roby² ^(D), and David J. P. Moore² ^(D)





Temperature profile at Tumbarumba site

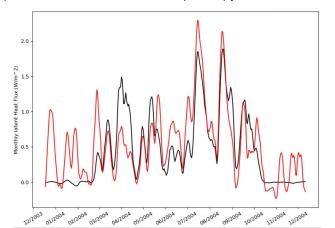
Observations

Model

Ryder et al., 2015

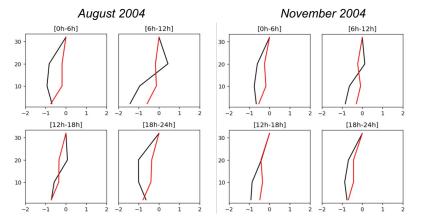
Recent results in the Trunk of ORCHIDEE

Multi-layer energy budget: Local results (DE-Hai – 2004) _____ Multi-Layer



Temperature difference between top canopy and surface in 2004

Normalized intra-canopy temperature gradienObservations

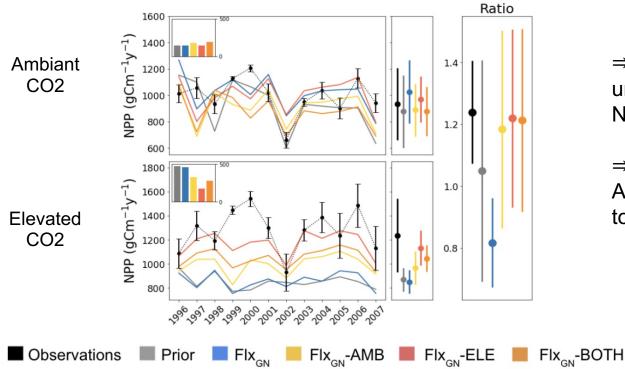


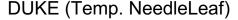
Overall canopy temperature gradient dynamics well represented during the year;

Intra-canopy climate well reproduced most of the time;

Assimilation of Free Air CO2 Enrichment data (FACE)

→ Optimisation of ORCHIDEE params (~ 20) at FACE sites (Oak Rige & Duke) with NPP & LAI



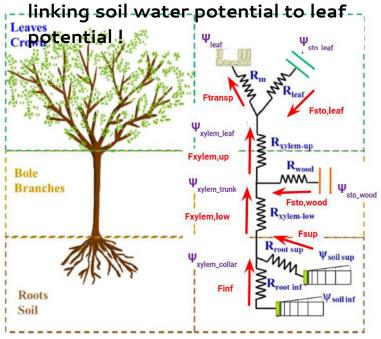


⇒ ORCHIDEE - CN Prior underestimates the change of NPP with doubling CO2

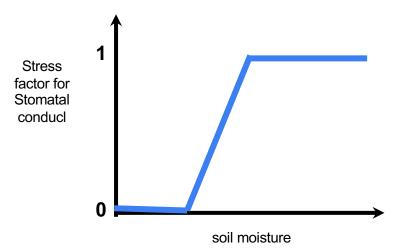
 \Rightarrow Need to optimise against both Ambient and Elevated CO2 data to fit the observed NPP ratio

Optimisation of new hydraulic architecture

 Implementation of a new physical scheme

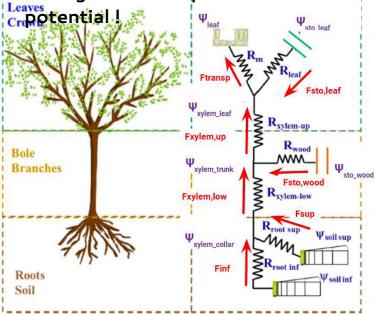


Versus a standard statistical scheme to link leaf transpiration / GPP to soil moisture stress

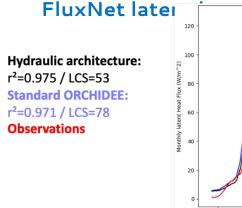


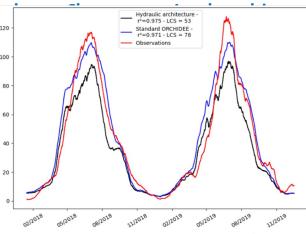
Optimisation of new hydraulic architecture

- Implementation of a new physical scheme
- --linking soil water potential to leaf--

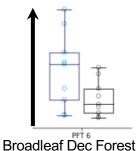


Optimisation of the STD vs NEW scheme with





==> Higher capability to model temporal flux variations especially during droughts !



@Alleon et al. (in