Fostering the understanding of sub-footprint heterogeneity in Cosmic-Ray Neutron Sensing, challenges of irrigation monitoring

C. Brogi¹, F. Nieberding¹, M. Köhli², V. Pisinaras³, O. Dombrowski¹, J. A. Huisman¹, A. Panagopoulos², H. J. Hendricks Franssen¹, and H. R. Bogena¹

¹Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425 Jülich, Germany ²Physikalisches Institut, Heidelberg University, 69120 Heidelberg, Germany ³Soil & Water Resources Institute, Hellenic Agricultural Organization "DEMETER", Thessaloniki, Greece

Soil moisture (SM) monitoring with cosmic-ray neutron sensors (CRNS)

- To improve irrigation management, help reduce water consumption, and mitigating crop losses, accurate soil moisture (SM) estimation is key.
- Cosmic ray neutron sensors (CRNS) are a promising method in informing irrigation practices due to their large sensed volume (footprint of \sim 130-210 m radius and \sim 15-85 cm depth).

Pilot apple orchard (Agia, Greece)

Sub-footprint heterogeneities are still subject of study and, as a CRNS provides one single estimation of SM over tens of hectares, a small irrigated field (~1-2 ha) is challenging to monitor.

uropean Union Funding Research & Innovat

We tested a novel CRNS correction in a ~1 ha irrigated field and we observed measurements over a 14-ha field irrigated in separate lines.

Pilot potato field (Leerodth, Germany)

JULICH

Forschungszentrum

ං

SWRI Soil and Water Resources Institute

Cosmi Sense

An apple orchard in Agia (Greece) was equipped with 12 SoilNet nodes of SM sensors (at 3 depths), hydrometers four to irrigation, record a compact meteorological station, and a CRNS.

- An additional SM node was installed outside the field to measure SM in the non-irrigated area (Θ_{out}) and thus estimate a synthetic neutron count (N_{out}^{s}) for such area.
- The contribution to the neutron count N of the irrigated area $(\%_{in})$ and of its surroundings ($\%_{out}$) are obtained using neutron transport simulations (URANOS model).
- Four URANOS simulations are sufficient to apply the method

Example of contribution to the count rate of neutrons that originate a) inside the field (45%), b) outside the field (40%), and c) non albedo neutrons (15%)

Starting from measured *N*, calculate:

> Portion of non-albedo neutrons $N_{non-alb} = N/100 * \%_{non-alb}$ Weight of outside-origin neutrons $K_{out} = N_{out}^{s} / 100 * \%_{out}$ $K_{in} = N - K_{out} - N_{non-alb}$ Weight of inside-origin neutrons

- A potato field of 14 ha in Leerodth, was equipped with 3 CRNS from Styx Neutronica GmbH (Germany). Two had one detector tube (P.1 and P.3) and one had two detector tubes (p.2).
- At each CRNS location, two point-scale SM sensors were installed:
 - SoilVUE10 (5, 10, 20, 30, 40, 50 cm depth) from Campbell Scientific Inc. (USA)
 - Drill&Drop (5, 15, 25, 35, 45, 55 cm depth) from Sentek Pty Ltd. (Australia).
- meteorological station was installed at location p.2.
- Electromagnetic induction (EMI) measurements were obtained to select appropriate locations.

- > Synthetic neutron count of the target field
- $N_{in}^{s} = K_{in} * 100 / \%_{in}$

- Estimations from the three CRNS can appear similar during irrigation
- Point-scale SM sensors affected by local effects (e.g., loss of soil contact)
- CRNS may be more suited to estimate a generalized SM value

Advantages and limitations

- CRNS could replace a dense sensor network, which generally is more costly and difficult to manage
- RMSE reduced (0.053 to 0.031) and SM dynamics are improved
- Few overestimations caused by supporting sensor position (too deep)

Conclusions & outlook

- CRNS can monitor and inform irrigation in small irrigated fields (~1 ha) and could sometimes replace a dense sensor network
- CRNS can offer a less site-dependent and more meaningful estimation of SM in certain agricultural contexts
- Further studies are needed to standardize the methodology and test results for different environments and irrigation methods

- Simplified and ad-hoc URANOS simulations provide similar results, and the former could reduce computation effort and increase standardization
- Use a single supporting sensor to correct multiple CRNSS
- Use a second CRNS or other CRNS in the area to perform correction
- Challenging in case of a highly heterogeneous SM distribution

References

Feasibility of irrigation monitoring with cosmic-ray neutron sensors Brogi C., Bogena H. R., Köhli M., Huisman J. A., Hendricks Franssen H-J., Dombrowski O. 2022, Geoscientific Instrumentation Methods and Data Systems. 11, 451-469 (10.5194/gi-11-451-2022)

Monitoring irrigation in small orchards with cosmic-ray neutron sensors Brogi C., Pisinaras V., Köhli M., Dombrowski O., Hendricks Franssen H-J., Babakos K., Chatzi A., Panagopoulos A., Bogena H. 2023, Sensors 23, 2378 (10.3390/s23052378)

Evaluation of Three Soil Moisture Profile Sensors Using Laboratory and Field Experiments Nieberding F., Huisman J. A., Huebner C., Schilling B., Weuthen A., Bogena H. R. 2023, Sensors 23, 6581 (10.3390/s23146581)

